Skip to main content

Japanese art gives inspiration for next-generation fusion systems.


"Inspired by Kintsugi, scientists at Princeton Plasma Physics Laboratory (PPPL) have developed a method to manage plasma in fusion reactors by utilizing magnetic field imperfections, enhancing stability and paving the way for more reliable and efficient fusion power. Credit: SciTechDaily.com" (ScitechDaily.com,Ancient Japanese Art Inspires Next-Gen Fusion Reactor Breakthrough)


During fusion tests, high-energy plasma travels in the particle accelerator. The problem with fusion is that this plasma is monotonic. There is only one type of ion. The system must press those ionized atoms against each other where their cores melt to new elements. 

During that process deuterium and tritium turn into helium. In some models, tritium is replaced by helium 3.  The big problem is this: when a fusion reaction ignites. That energy impulse pushes plasma away. That impulse breaks entirety. So there should be some pockets, where the energy impulse can go. Or it breaks the ion ring. 

The distance of those nuclei is turning too high. And that ends fusion. In some models, the deuterium and tritium turned into the ion and anion that particle accelerators shoot together. In that model, the fusion reactor is a "Y"-shaped system where the ions and anions impact together. 

What if fusion starts at the outer edge of the plasma ring? This thing requires a new shape of fusion. The new fusion system can create an apple-shaped hollow fusion where the system injects high-speed plasma ions. Another way is to shoot laser rays through the plasma that orbits in the Tokamak reactor. 

Another way is to make the fusion system that begins the fusion at the outer edge of the plasma material. In that ring-looking ignition model, there is a laser or ion beam. That conducts energy out from the inside of the plasma. The plasma structure itself is hollow. And the problem is how to deny the energy reflection from the inner structure. The thing that destroys the ion structure is the energy impulse that will travel out of the system. 

In some other models, there is a thermal pump or some kind of electromagnetic or acoustic beam that can make a lower energy area in fusion material. The idea is that there is a hole where the system can drive high-energy plasma. 

Then the system will ignite fusion conducting high-energy ionized plasma in that lower energy point. The idea is that the high-energy plasma can act like a diesel-engine piston. It pushes the plasma to the chamber wall and the magnetic field pushes it back. That system can ignite fusion at the edge of the plasma structure. 

This thing makes energy space travel in the plasma. If plasma sticks inside the surrounding plasma high energy makes energy move into the plasma very smooth. Then the laser ray transports energy out from the middle of the fusion. 


https://scitechdaily.com/ancient-japanese-art-inspires-next-gen-fusion-reactor-breakthrough/

Comments

Popular posts from this blog

What is the difference between TR-3A and TR-3B? And are those planes real?

What is the difference between TR-3A and TR-3B? And are those planes real? Is TR-3B (0) "Black Triangle UFO" or is it only the piece of paper?  The study project, what is used to create advanced ideas for use of the nuclear-powered aircraft. Or is it the study project or black budget aircraft, where lost 2,3 trillion dollars (1)of the stealth bomber were gone. In this text is things, that might seem very difficult to accept, and when we are thinking about things like doubling the object or making it smaller by using huge layers of energy, nothing denies to test those things. But were those tests successful, there is no data about that in public Internet, so we must say that things like doubling the human or aircraft can be tested, but the results can be unknown.  But in the source two is the tale, what seems like impossible, those men, who got Noble Prize put at first time one atom to the box, and hit it with photon one photon in the box and hit it with th

Mythic Planet X is an interesting thing because that allows the way to the perfect stealth technology.

  Mythic Planet X is an interesting thing because that allows the way to the perfect stealth technology.  Could a hypothetical Planet X tunnel all radiation?  The myth of Planet X still lives. Nobody ever saw that planet, and the thing that supports the theory of previously unknown large-size planets in Kuiper's belt are mysterious anomalies in Neptune's trajectory. The thing is that nothing else supports the theory of the existence of the "invisible planet". The size of the planet must be very big. And its gravitational field strong that it can affect Neptune's trajectory.  And the search for that mysterious planet is very long work. In some visions, the mysterious gravitational source is mentioned as the small black hole, but nobody understands why that black hole doesn't seem to interact.  In some other theories, Planet X is a glimpse of dark matter. And that thing makes it invisible. But there is one weakness. The dark matter object must have some kind of

Nanoparticles are excellent tools for medicine transporters.

"Researchers have developed a new therapy for pancreatic cancer involving nanoparticles that stimulate immune responses and improve drug delivery. This innovative method has led to significant tumor reduction in mice and holds potential for treating other cancers. Credit: SciTechDaily.com" (ScitechDaily, New Nanoparticle Cancer Treatment Successfully Shrinks and Eliminates Pancreatic Tumors) Nanoparticles can carry medicines into wanted cells. The idea is that the same system that feeds those cells transports those nanoparticles into cells that need medicine. When a nanoparticle goes, into a cell, it releases the chemicals into the targeted cells. Because nanoparticles don't let medical molecules interact with a body that makes it possible to create new and more powerful cytostatics. Nanoparticles can transport things like ricin molecules into wanted cells.  Ricin is one of the most poisonous chemicals. That chemical is useful for next-generation cytostatics, if researche