Skip to main content

How strong is strong nuclear force?



Image 1:)


Strong nuclear force holds 99% of the universe's mass. That means its strongest known interaction. And somebody has introduced that gravitation is strong interaction that leaks from the atoms. The strong interaction is an interaction between quarks and gluons.  

The strong interaction is the reason why the annihilation reaction is so powerful. And that reaction where antimatter faces material is the only known reaction where a strong nuclear force is released. But when we are thinking about the form of the baryons or baryonic hadrons we can focus on why two black holes orbit very close to each other and are sending gravitational waves. The origin of the gravitational waves could be in the gluon tunnels between the quark and gluon. 

The baryon or baryonic hadrons like proton and neutron are forming of three particles called quarks. Or, the most common baryons, protons, and neutrons consist of the quarks and gluons that transmit strong nuclear force between those quarks. When baryonic hadrons are spinning with extremely high speed that structure would act like the boom that throws the wave motion that travels through the quantum field of baryon away from it.

In the same way, the black holes that are orbiting each other are creating the energy bridge between them. So there is the possibility that there are gluon tunnels that are traveling between those black holes. 




Image 2:) Proton


When we are thinking about the mysterious graviton. Researchers could find that still hypothetical particle somewhere between gluon and quark. If we are thinking that the X-rays are coming from quarks and gamma rays come from gluons. That means the next particle in the atom's nucleus could be a graviton. 

Because gravitational waves existed. That means we can call that phenomenon gravitational radiation. Gravitational waves are wave motions like light. So when we are thinking about the spin of gravitational baryons the channel between quarks can throw that gravitational wave motion to the sides of the baryons. 

And maybe the gravitation or gravitational waves are at an extremely high energy level. But the radiation would not transmit energy to the particle. Or the thermal energy will transfer away from it immediately. There are two ways that things can happen. The first way is that gravitational radiation will travel over the particle without touching it. That forms an electromagnetic vacuum behind that particle. 

And the light quantum that the material sends will travel through that shadow. Or the pressure of gravitational radiation pushes energy through the particle. That means the energy flow from the backward of the material is higher than at the front of it. 

One of the reasons for that is the vaporization of the particle. That impacting gravitation radiation causes the asymmetry in the energy field of that particle. But the vaporization of material that is the reason for cosmic inflation means that the gravitation radiation turns stronger in the back of the particle. 


https://scitechdaily.com/the-strength-of-the-strong-force-accounting-for-99-of-the-ordinary-mass-in-the-universe/


https://en.wikipedia.org/wiki/Baryon


https://en.wikipedia.org/wiki/Neutron


https://en.wikipedia.org/wiki/Proton


Image 1:) https://scitechdaily.com/the-strength-of-the-strong-force-accounting-for-99-of-the-ordinary-mass-in-the-universe/


Image 2:) https://en.wikipedia.org/wiki/Proton


https://artificialintelligenceandindividuals.blogspot.com/


Comments

Popular posts from this blog

What is the difference between TR-3A and TR-3B? And are those planes real?

What is the difference between TR-3A and TR-3B? And are those planes real? Is TR-3B (0) "Black Triangle UFO" or is it only the piece of paper?  The study project, what is used to create advanced ideas for use of the nuclear-powered aircraft. Or is it the study project or black budget aircraft, where lost 2,3 trillion dollars (1)of the stealth bomber were gone. In this text is things, that might seem very difficult to accept, and when we are thinking about things like doubling the object or making it smaller by using huge layers of energy, nothing denies to test those things. But were those tests successful, there is no data about that in public Internet, so we must say that things like doubling the human or aircraft can be tested, but the results can be unknown.  But in the source two is the tale, what seems like impossible, those men, who got Noble Prize put at first time one atom to the box, and hit it with photon one photon in the box and hit it with th

Mythic Planet X is an interesting thing because that allows the way to the perfect stealth technology.

  Mythic Planet X is an interesting thing because that allows the way to the perfect stealth technology.  Could a hypothetical Planet X tunnel all radiation?  The myth of Planet X still lives. Nobody ever saw that planet, and the thing that supports the theory of previously unknown large-size planets in Kuiper's belt are mysterious anomalies in Neptune's trajectory. The thing is that nothing else supports the theory of the existence of the "invisible planet". The size of the planet must be very big. And its gravitational field strong that it can affect Neptune's trajectory.  And the search for that mysterious planet is very long work. In some visions, the mysterious gravitational source is mentioned as the small black hole, but nobody understands why that black hole doesn't seem to interact.  In some other theories, Planet X is a glimpse of dark matter. And that thing makes it invisible. But there is one weakness. The dark matter object must have some kind of

Nanoparticles are excellent tools for medicine transporters.

"Researchers have developed a new therapy for pancreatic cancer involving nanoparticles that stimulate immune responses and improve drug delivery. This innovative method has led to significant tumor reduction in mice and holds potential for treating other cancers. Credit: SciTechDaily.com" (ScitechDaily, New Nanoparticle Cancer Treatment Successfully Shrinks and Eliminates Pancreatic Tumors) Nanoparticles can carry medicines into wanted cells. The idea is that the same system that feeds those cells transports those nanoparticles into cells that need medicine. When a nanoparticle goes, into a cell, it releases the chemicals into the targeted cells. Because nanoparticles don't let medical molecules interact with a body that makes it possible to create new and more powerful cytostatics. Nanoparticles can transport things like ricin molecules into wanted cells.  Ricin is one of the most poisonous chemicals. That chemical is useful for next-generation cytostatics, if researche