Skip to main content

What kind of place was the young universe?



Cosmologists say that the young universe was "hot", but they don't usually explain what "hot" means. There was a lot more energy in the early universe, and material along with wave motion was thicker than today. 

But the universe was not similar as its today. The reflection was stronger and cosmic inflation was extremely strong. Also, radiation was stronger, and that caused the vaporization of material to be slower. 

The material was at a higher energy level than it's now. But the base energy level of that system was also higher. And time was different in that system. 

The gravitational interaction was also stronger. The reason for that objects was closer to each other. But the electromagnetic interaction was different. The quantum fields and radiation pushed those objects and pumped more energy into them. 

In the young universe, two forces fought against each other. Radiation rips the universe into pieces and gravitation pulls objects back together. 

The expansion of the young universe was similar. But because the universe or the plasma bubble that forms visible material was smaller the effect of expansion was stronger. 

Strong reflection caused the speed of light to be slower. Or photons moved with more curving trajectories. 

Time was slower in the young universe. And there were situations where the photons were trapped inside the radiation. That means the high-energy material formed the photon crystals that formed standing photons inside that plasma. 

Because the material was thicker the effects of the things like supernovas were more powerful than its today. Those stars exploded in the young universe as super supernovas. 

The thing that formed those super supernovas was similar to the effect of the detonation in water. When some explosive detonates in water. Its effect is more powerful than if that explosive detonates in the air. 

Those super supernovas affected also other stars in the young universe. And their shockwaves can destroy many stars. The thing is that the life of the stars in the young universe was short and fast. 

The interesting thing in the young universe was that if we would be in that space, we would not feel that anything was smaller than in the modern universe. Everything was smaller in that strange space. Of course, the energy level of the young universe was higher than it's today. 

But that would not mean that the stars were "hotter" than in the modern universe. The terms "hot" and "cold" depending on the difference between the base energy level and the object. So if we think that the base energy level of the early or young universe would be two million degrees Celsius, that means the "zero kelvin" in that system is two million degrees celsius. 

The base energy level in our universe is -273,15 degrees Celsius or zero Kelvin. That thing is made in the laboratory. The Universe itself is at least three to four degrees hotter than the absolute zero point. 

But if we want to measure that temperature we must be outside that system. If we are inside that system the lowest possible energy level is 2 million degrees Celcius in our system. The thing is that we can measure only temperature differences, and the base temperature or energy level of the system is the energy minimum. Below that is no energy that we can measure. 


https://artificialintelligenceandindividuals.blogspot.com/

Comments

Popular posts from this blog

What is the difference between TR-3A and TR-3B? And are those planes real?

What is the difference between TR-3A and TR-3B? And are those planes real? Is TR-3B (0) "Black Triangle UFO" or is it only the piece of paper?  The study project, what is used to create advanced ideas for use of the nuclear-powered aircraft. Or is it the study project or black budget aircraft, where lost 2,3 trillion dollars (1)of the stealth bomber were gone. In this text is things, that might seem very difficult to accept, and when we are thinking about things like doubling the object or making it smaller by using huge layers of energy, nothing denies to test those things. But were those tests successful, there is no data about that in public Internet, so we must say that things like doubling the human or aircraft can be tested, but the results can be unknown.  But in the source two is the tale, what seems like impossible, those men, who got Noble Prize put at first time one atom to the box, and hit it with photon one photon in the box and hit it with th

Mythic Planet X is an interesting thing because that allows the way to the perfect stealth technology.

  Mythic Planet X is an interesting thing because that allows the way to the perfect stealth technology.  Could a hypothetical Planet X tunnel all radiation?  The myth of Planet X still lives. Nobody ever saw that planet, and the thing that supports the theory of previously unknown large-size planets in Kuiper's belt are mysterious anomalies in Neptune's trajectory. The thing is that nothing else supports the theory of the existence of the "invisible planet". The size of the planet must be very big. And its gravitational field strong that it can affect Neptune's trajectory.  And the search for that mysterious planet is very long work. In some visions, the mysterious gravitational source is mentioned as the small black hole, but nobody understands why that black hole doesn't seem to interact.  In some other theories, Planet X is a glimpse of dark matter. And that thing makes it invisible. But there is one weakness. The dark matter object must have some kind of

Nanoparticles are excellent tools for medicine transporters.

"Researchers have developed a new therapy for pancreatic cancer involving nanoparticles that stimulate immune responses and improve drug delivery. This innovative method has led to significant tumor reduction in mice and holds potential for treating other cancers. Credit: SciTechDaily.com" (ScitechDaily, New Nanoparticle Cancer Treatment Successfully Shrinks and Eliminates Pancreatic Tumors) Nanoparticles can carry medicines into wanted cells. The idea is that the same system that feeds those cells transports those nanoparticles into cells that need medicine. When a nanoparticle goes, into a cell, it releases the chemicals into the targeted cells. Because nanoparticles don't let medical molecules interact with a body that makes it possible to create new and more powerful cytostatics. Nanoparticles can transport things like ricin molecules into wanted cells.  Ricin is one of the most poisonous chemicals. That chemical is useful for next-generation cytostatics, if researche