Skip to main content

Do neutron stars have quark cores?

 Do neutron stars have quark cores? 


"New theoretical analysis places the likelihood of massive neutron stars hiding cores of deconfined quark matter between 80 and 90 percent. The result was reached through massive supercomputer runs utilizing Bayesian statistical inference." (ScitechDaily.com/Neutron Stars’ Inner Mysteries: A Glimpse Into Quark-Matter Cores)

Neutron star's inner cores might involve quark cores. That means there could be also quark stars in the universe. Theoretical models made at the University of Helsinki support the possibility that heavy neutron stars are quark cores. That thing opens a very interesting vision for gravitation and star research. In theoretical models, Magnetars are very light neutron stars. Which shell rotates very fast around its structure. That forms a very strong magnetic field. 

In heavy neutron stars. Gravity locks structure into its entirety. And that makes those heavy neutron stars' magnetic fields weaker but their gravity fields are stronger. That means gravity seems acting like some kind of membrane or strings. That travels between or through neutrons. And that locks the structure into one piece. 


"Artist’s impression of the different layers inside a massive neutron star, with the red circle representing a sizable quark-matter core. Credit: Jyrki Hokkanen, CSC" (ScitechDaily.com/Neutron Stars’ Inner Mysteries: A Glimpse Into Quark-Matter Cores)


Hypothetical quark star: an object intermediate. Between neutron stars and black holes.


We can think that the quark star is an object intermediate between neutron stars and black holes. Nobody has seen that thin yet, so it's a theoretical object. 

The mass of neutron stars determines their quark core's size. And in light neutron stars might not be quark core. Then there would be no quark core or a very small quark core in magnetars. But the part of the pure quark structure in neutron stars rises when their mass rises. And when a collapsing star's mass is high enough all neutrons turn into quarks and form a quark star. 

But then we can continue this thinking game. The idea is that the model can also be in white dwarfs and black holes. So in a very heavy white dwarfs could be neutron stars inside them. In a very heavy quark stars could be back holes in the free quark structure. 



The quark star forms when a neutron star turns too heavy that neutrons can keep their shells. The extreme gravity along with neutron radiation, strips those quantum fields away from the neutrons. That uncovers quarks. And the quark stars would be much denser than neutron stars. Those quarks send their radiation in the wavelength that is the same as the quark's dimension. And that thing could make the quark star almost invisible. 

The quark structure would be far stronger than the neutron structure. That means inside the heaviest quark structures can form a black hole or area where even light cannot escape. And in that model is possible. That those quarks form a symmetrical quark net around that black hole. That quark net could keep that structure in its form. 

In some models, there is the possibility that also gluons can form structures that are similar to quarks. Those gluon stars are hypothetical things, and they are very close to black holes. In some models when a hypothetical quark star massive gravity pushes those quarks so close to each other. That they will push gluons out from that structure. In that model, the quark stars are the only things between black holes and neutron stars. 


Is there gluon stars?

If a quark star exists, is it possible that gluon stars also exist? Gluon is not fermion. But it's a near possible limit that massive gravity and radiation pressure in a supernova form black hole there is a network of gluons near its event horizon. Gluons are gauge bosons. But a black hole's strong gravity and energy load locks those gluons into position making them interact like quarks that are fermions. 

In some other models intensive pressure and heat in high-mass quark stars can form structures where is only quark-gluon or gluon plasma. That kind of structure is a hypothetical thing. 


https://physicsworld.com/a/calculations-point-to-massive-quark-stars/


https://scitechdaily.com/neutron-stars-inner-mysteries-a-glimpse-into-quark-matter-cores/


https://en.wikipedia.org/wiki/Quark_star


Comments

Popular posts from this blog

What is the difference between TR-3A and TR-3B? And are those planes real?

What is the difference between TR-3A and TR-3B? And are those planes real? Is TR-3B (0) "Black Triangle UFO" or is it only the piece of paper?  The study project, what is used to create advanced ideas for use of the nuclear-powered aircraft. Or is it the study project or black budget aircraft, where lost 2,3 trillion dollars (1)of the stealth bomber were gone. In this text is things, that might seem very difficult to accept, and when we are thinking about things like doubling the object or making it smaller by using huge layers of energy, nothing denies to test those things. But were those tests successful, there is no data about that in public Internet, so we must say that things like doubling the human or aircraft can be tested, but the results can be unknown.  But in the source two is the tale, what seems like impossible, those men, who got Noble Prize put at first time one atom to the box, and hit it with photon one photon in the box and hit it with th

Mythic Planet X is an interesting thing because that allows the way to the perfect stealth technology.

  Mythic Planet X is an interesting thing because that allows the way to the perfect stealth technology.  Could a hypothetical Planet X tunnel all radiation?  The myth of Planet X still lives. Nobody ever saw that planet, and the thing that supports the theory of previously unknown large-size planets in Kuiper's belt are mysterious anomalies in Neptune's trajectory. The thing is that nothing else supports the theory of the existence of the "invisible planet". The size of the planet must be very big. And its gravitational field strong that it can affect Neptune's trajectory.  And the search for that mysterious planet is very long work. In some visions, the mysterious gravitational source is mentioned as the small black hole, but nobody understands why that black hole doesn't seem to interact.  In some other theories, Planet X is a glimpse of dark matter. And that thing makes it invisible. But there is one weakness. The dark matter object must have some kind of

Nanoparticles are excellent tools for medicine transporters.

"Researchers have developed a new therapy for pancreatic cancer involving nanoparticles that stimulate immune responses and improve drug delivery. This innovative method has led to significant tumor reduction in mice and holds potential for treating other cancers. Credit: SciTechDaily.com" (ScitechDaily, New Nanoparticle Cancer Treatment Successfully Shrinks and Eliminates Pancreatic Tumors) Nanoparticles can carry medicines into wanted cells. The idea is that the same system that feeds those cells transports those nanoparticles into cells that need medicine. When a nanoparticle goes, into a cell, it releases the chemicals into the targeted cells. Because nanoparticles don't let medical molecules interact with a body that makes it possible to create new and more powerful cytostatics. Nanoparticles can transport things like ricin molecules into wanted cells.  Ricin is one of the most poisonous chemicals. That chemical is useful for next-generation cytostatics, if researche