Skip to main content

The new DNA toolbox can make everything without CRISPR.


The new DNA toolbox uses bacteria to create and multiply the DNA for genome research and genetic engineering. Researchers can use artificial DNA to fix genetic errors and make new types of cells for things like energy production. The ability to interconnect DNA from different sources over species borders opens a world where only imagination is limited. 

The problem is that the DNA must be done in large numbers so that the system can make enough artificial cells for the DNA transplant. The DNA sequence must transfer into artificial DNA with a very high accuracy. Then that artificial DNA must be injected into the cell, where the original DNA is removed, because that cell must create the artificial DNA. 

The problem with the artificial DNA is how to multiply it. If that problem is solved, the system can create new artificial DNA and artificial species. The AI-based solutions can connect images from different species, and then the system can search the DNA sequences. They are similar to animals that have spots. 



The hypothesis goes like this. Similar genomes are controlling the spots of the leopard and butterflies. And if all animals that have spots have similar sequences in their DNA. That thing can offer a conclusion that similar DNA sequences control all spots in nature. The problem is how to find those sequences from the other DNA sequences. And the AI can answer. AI can make the system possible to find the point in the DNA that controls certain things. 

When the next generation of doctors gives DNA therapy they must just find the right DNA point.  Then doctors cut the DNA. Then the system connects the new sequence to that place.  The problem is that the DNA manipulation must done very accurately.  The DNA molecule is very long. And the system must find the precise in the right place. 

This kind of system can use the artificial DNA as the chemical qubit. The system will load data to the DNA. Then the system can read that DNA from multiple points. The system can be interesting, but maybe slower than the electric qubits. This kind of electrochemical quantum computer can be slow but it is less error-sensitive than the electromagnetic quantum computer. 

The thing, how the AI makes DNA analysis very effective is that the AI can multiply the DNA in PCR (Polymerase Chain Reaction) and deliver that multiplied DNA to the different analysis points. Then the AI can order those systems to begin the DNA analysis at different, individual points of the DNA. The AI acts like a virtual quantum computer. 

When the AI starts to read the DNA in multiple workstations. Each of those systems starts the process at different points. That increases the power of the system. If there are a thousand workstations. And they read the DNA chain in an identical sequence. That leaves 3000 000 base pairs for each workstation. The DNA that the system uses can be separated, but if those bites are identical. The system can use this method where each workstation begins at individual points to make the DNA analysis more powerful than we can ever imagine. 


https://phys.org/news/2024-02-toolbox-genomes-crispr.html


https://techandsciencepost.com/news/biology/new-toolbox-allows-engineering-of-genomes-without-crispr/


Comments

Popular posts from this blog

What is the difference between TR-3A and TR-3B? And are those planes real?

What is the difference between TR-3A and TR-3B? And are those planes real? Is TR-3B (0) "Black Triangle UFO" or is it only the piece of paper?  The study project, what is used to create advanced ideas for use of the nuclear-powered aircraft. Or is it the study project or black budget aircraft, where lost 2,3 trillion dollars (1)of the stealth bomber were gone. In this text is things, that might seem very difficult to accept, and when we are thinking about things like doubling the object or making it smaller by using huge layers of energy, nothing denies to test those things. But were those tests successful, there is no data about that in public Internet, so we must say that things like doubling the human or aircraft can be tested, but the results can be unknown.  But in the source two is the tale, what seems like impossible, those men, who got Noble Prize put at first time one atom to the box, and hit it with photon one photon in the box and hit it with th

Mythic Planet X is an interesting thing because that allows the way to the perfect stealth technology.

  Mythic Planet X is an interesting thing because that allows the way to the perfect stealth technology.  Could a hypothetical Planet X tunnel all radiation?  The myth of Planet X still lives. Nobody ever saw that planet, and the thing that supports the theory of previously unknown large-size planets in Kuiper's belt are mysterious anomalies in Neptune's trajectory. The thing is that nothing else supports the theory of the existence of the "invisible planet". The size of the planet must be very big. And its gravitational field strong that it can affect Neptune's trajectory.  And the search for that mysterious planet is very long work. In some visions, the mysterious gravitational source is mentioned as the small black hole, but nobody understands why that black hole doesn't seem to interact.  In some other theories, Planet X is a glimpse of dark matter. And that thing makes it invisible. But there is one weakness. The dark matter object must have some kind of

Nanoparticles are excellent tools for medicine transporters.

"Researchers have developed a new therapy for pancreatic cancer involving nanoparticles that stimulate immune responses and improve drug delivery. This innovative method has led to significant tumor reduction in mice and holds potential for treating other cancers. Credit: SciTechDaily.com" (ScitechDaily, New Nanoparticle Cancer Treatment Successfully Shrinks and Eliminates Pancreatic Tumors) Nanoparticles can carry medicines into wanted cells. The idea is that the same system that feeds those cells transports those nanoparticles into cells that need medicine. When a nanoparticle goes, into a cell, it releases the chemicals into the targeted cells. Because nanoparticles don't let medical molecules interact with a body that makes it possible to create new and more powerful cytostatics. Nanoparticles can transport things like ricin molecules into wanted cells.  Ricin is one of the most poisonous chemicals. That chemical is useful for next-generation cytostatics, if researche