The AI can be the ultimate tool for predicting and controlling the system.


"Amplified Industries’ sensors and analytics give oil well operators real-time alerts when things go wrong, allowing them to respond to issues before they become disasters. Credit: MIT News, iStock" (ScitechDaily, AI Transforms Oil Field Operations With Predictive Analytics)


The AI itself is a powerful tool. It can predict things like the lifetime of people. But the best way how to use AI is to use it to predict the fully controlled system's behavior. Similar predictive algorithms, used to predict and control oil rigs can used to control fresh water plants. And they can control traffic and many other systems. 

The algorithm can predict the liquid's behavior precisely if that liquid is in an environment with controlled energy, level, radiation direction, and PH. This thing makes it possible to improve chemical reactions and their control. Those algorithms can also used to predict the behavior of electromagnetic fields. 



"A novel optimization technique enhances the speed and accuracy of Bayesian inference, streamlining scientific research by automating complex calculations and offering reliable uncertainty estimates. Credit: SciTechDaily.com" (ScitechDaily, Predictive Power Unleashed by MIT’s Advanced Bayesian Optimization)


The new tools. That is used to predict the system's behavior can use Bayesian optimization. The Bayesian optimization is explained in the link after this text. This thing can make AI more capable of controlling quantum computers. 

The AI-based operating systems can turn the computer network into virtual quantum computers. In that model, the AI shares the mission for multiple binary computers. And then return that thing into one form. 

But AI can used to make quantum programming one step closer. Quantum programming is different than binary programming because the qubit's behavior is different. The AI-based operating systems and AI-based programming tools can translate "regular" binary programs for quantum computers. In those cases, the AI-based algorithms can turn the program code for qubits. And this is one of the things that is important for successful programming. 

The ability to control qubits requires. That the system can observe its behavior all the time. The system must predict the point, where the qubits at both ends of the quantum entanglement reach the same energy levels. That thing breaks the entanglement. 


"Rice University physicists discovered a quantum material that can switch between two electronic phases, paving the way for advanced quantum memory technologies capable of storing qubits reliably. Credit: SciTechDaily.com" (ScitechDaily, Quantum Leap: Rice Physicists Unlock Flash-Like Memory for Future Qubits)


During programming the system must control the gate. The gate is the tool that drives information from binary computers to the qubit. This gate is hard to make. But nanotechnology allows us to take things like electrons in the frame. And then the frame writes data to the electron and turns it into the qubits. 

The quantum drums or oscillating quantum spots can also act as qubit pairs. The quantum spots are almost like regular qubits. The quantum entanglement synchronizes those spot's oscillation. But it's theoretically possible that superposition and entanglement can created between those quantum spot's internal layers. The idea is that the quantum entanglement is made between internal layers of the particle. 


"Reserachers are able to translate information in light to vibrations af the membrane inside a quantum drum. Credit: Julian Robinson-Tait" (ScitechDaily,How a Quantum Drum Could Change Everything About the Internet)

"Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic vibrations, and then forward the data with new light sources when needed again. The results demonstrate that mechanical memory for quantum data could be the strategy that paves the way for an ultra-secure internet with incredible speeds". (ScitechDaily, How a Quantum Drum Could Change Everything About the Internet)

The system must store information before it can send it forward. The quantum drums make it possible. The system can exchange information between those drums. And that thing can make it possible to create ultra-secure data transfer in and outside the system. These kinds of quantum drums can transport information in the fullerene nanotubes. And it makes the system's security more effective. Those quantum drums can also make photonic computers a reality. 

In photonic computers, information and electricity are separated in different lines. The same line as a fullerene nanotube doesn't transport electricity and information. Information travels in that nanotube in the photonic form. The electricity that components require travels in the different wires. The AI can control the electric and photon flow which can keep the system's temperature as low as possible. 

Those quantum drums that researchers at the University of Copenhagen can store information on when photons hit them. This kind of system can change everything on the net. They can aim for information precisely at the right point. The receiver must have the right drum so that the quantum system can make resonance with it without that resonance and oscillation, the system cannot transfer information into that drum. 


https://scitechdaily.com/how-a-quantum-drum-could-change-everything-about-the-internet/


https://scitechdaily.com/ai-transforms-oil-field-operations-with-predictive-analytics/


https://scitechdaily.com/predictive-power-unleashed-by-mits-advanced-bayesian-optimization/


https://scitechdaily.com/quantum-leap-rice-physicists-unlock-flash-like-memory-for-future-qubits/


https://en.wikipedia.org/wiki/Bayesian_optimization

Comments