Skip to main content

Pulsed plasma rockets are an interesting solution for Mars missions.


"Howe Industries is developing a Pulsed Plasma Rocket (PPR) capable of producing 100,000 N of thrust with a specific impulse of 5,000 seconds, promising to revolutionize space travel by enabling faster and safer manned missions to Mars and beyond. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Mars in a Flash: How Pulsed Plasma Rockets Are Revolutionizing Space Travel)


The new pulsed plasma rockets (PPR) with 100,000-newton thrust and a specific impulse of 5000 seconds are the tools that can transport humans to Mars. In a very short time. If we compare that time with chemical rockets. The pulsed plasma systems can use fusion, fission, or antimatter to create high-energy plasma that pushes the rocket forward. The light antimatter system uses the antimatter or positron injection into the water or hydrogen. 

The system that raises the propellant's temperature can also be radio waves, microwaves, or lasers. In a radio wave-based system. Plus and minus radiowaves impact the propellant. And form an electric arc. In the microwave-based system, the engine heats propellant using microwaves, and then a magnetic field pulls that heated plasma backward. It's laser plasma engines. The system uses lasers to heat and ionize propellants. 


Simplified image of the Pulsed Plasma Rocket (PPR) system. Credit: Brianna Clements, edited (ScitechDaily, Mars in a Flash: How Pulsed Plasma Rockets Are Revolutionizing Space Travel)



It doesn't matter how the heating systems or ionizers get their energy. And that means the pulsed plasma engines can operate using solar power. Nuclear rockets always need long wings to decrease the reactor's temperature. So the system may use solar power for at least part of the mission time. 

Small-size pulsed plasma engines that operate near Earth can get the power remotely from high-power radio transmitters or laser satellites. That kind of system can transport humans between Earth's orbiter and the Moon. That means the moon shuttle can also use pulsed plasma. And we can say that the moon shuttle must not have the same capacity as Marscraft. 

The idea of those (systems is simple. A rocket engine raises the material's temperature to a very high level, and then that expansion pushes the craft forward. One of the problems with pulsed plasma engines is how to control plasma. If high-energy plasma touches the plasma channel wall, it burns that will immediately. 


https://scitechdaily.com/mars-in-a-flash-how-pulsed-plasma-rockets-are-revolutionizing-space-travel/


https://en.wikipedia.org/wiki/Specific_impulse

Comments

Popular posts from this blog

What is the difference between TR-3A and TR-3B? And are those planes real?

What is the difference between TR-3A and TR-3B? And are those planes real? Is TR-3B (0) "Black Triangle UFO" or is it only the piece of paper?  The study project, what is used to create advanced ideas for use of the nuclear-powered aircraft. Or is it the study project or black budget aircraft, where lost 2,3 trillion dollars (1)of the stealth bomber were gone. In this text is things, that might seem very difficult to accept, and when we are thinking about things like doubling the object or making it smaller by using huge layers of energy, nothing denies to test those things. But were those tests successful, there is no data about that in public Internet, so we must say that things like doubling the human or aircraft can be tested, but the results can be unknown.  But in the source two is the tale, what seems like impossible, those men, who got Noble Prize put at first time one atom to the box, and hit it with photon one photon in the box and hit it with th

Mythic Planet X is an interesting thing because that allows the way to the perfect stealth technology.

  Mythic Planet X is an interesting thing because that allows the way to the perfect stealth technology.  Could a hypothetical Planet X tunnel all radiation?  The myth of Planet X still lives. Nobody ever saw that planet, and the thing that supports the theory of previously unknown large-size planets in Kuiper's belt are mysterious anomalies in Neptune's trajectory. The thing is that nothing else supports the theory of the existence of the "invisible planet". The size of the planet must be very big. And its gravitational field strong that it can affect Neptune's trajectory.  And the search for that mysterious planet is very long work. In some visions, the mysterious gravitational source is mentioned as the small black hole, but nobody understands why that black hole doesn't seem to interact.  In some other theories, Planet X is a glimpse of dark matter. And that thing makes it invisible. But there is one weakness. The dark matter object must have some kind of

Nanoparticles are excellent tools for medicine transporters.

"Researchers have developed a new therapy for pancreatic cancer involving nanoparticles that stimulate immune responses and improve drug delivery. This innovative method has led to significant tumor reduction in mice and holds potential for treating other cancers. Credit: SciTechDaily.com" (ScitechDaily, New Nanoparticle Cancer Treatment Successfully Shrinks and Eliminates Pancreatic Tumors) Nanoparticles can carry medicines into wanted cells. The idea is that the same system that feeds those cells transports those nanoparticles into cells that need medicine. When a nanoparticle goes, into a cell, it releases the chemicals into the targeted cells. Because nanoparticles don't let medical molecules interact with a body that makes it possible to create new and more powerful cytostatics. Nanoparticles can transport things like ricin molecules into wanted cells.  Ricin is one of the most poisonous chemicals. That chemical is useful for next-generation cytostatics, if researche