Skip to main content

The breakthrough makes it possible to create sustaining chemical compounds for nanotechnology. 




"Researchers have detailed the structure and function of the enzyme styrene oxide isomerase, a tool that enables green chemistry by facilitating the biological equivalent of the Meinwald reaction. This enzyme’s ability to produce specific products with high efficiency and stereospecificity holds significant potential for the chemical and pharmaceutical industries, promising more sustainable and environmentally friendly processes. (Artist’s concept.) Credit: SciTechDaily.com." (ScitechDaily, Bionanomachine Breakthrough: A Master Key for Sustainable Chemistry)


Nanotechnology makes it possible to create new types of treatments. In medical use, long and complex molecules make sure. That medicine is released only at the right point. When an enzyme touches the medicine molecule it cuts chemical compounds. 

And that activates the medicine. The medicine molecules can equipped with the transportation molecule or enzyme that makes the medicine travel into the right cells. This molecule can be the nutrient that the targeted cells or bacteria eat. 

Nanomachines are perfect tools for things like medical treatment. The main problem in those things is how to control nanomachines. The nanomachines are complex molecules that act like machines. The complex molecules require mass production. 

Nanomachines can used in medical work. The problem with nanotechnology is how to make sustaining chemical compounds. The second problem is how to make nanomachines select the right cells. And the third problem is how to control those nanomachines.? 

And the second problem is how to destroy those molecules at the right moment. If we think of the wheel-looking molecular machines that are above the text, we must understand that the size of those machines is very small. The system can use acoustic whirls to press ions and anions together.

Nano-wheels can destroy bacteria in three ways. The nanorobot can slip into bacteria, and then it starts to rotate very fast. That thing destroys the bacteria's internal structures. The nanorobot can start to rotate very fast and make nanobubbles that can destroy bacteria. 

The fast-rotating nanomachine can form a so-called acoustic bubble. When that bubble starts to oscillate. It forms a low-pressure area around its shell. That causes liquid vaporization. And that forms new bubbles. Or the acoustic system can detonate the nanomachine, which makes holes in the cell's shell. 

The wheel-shaped nanomachines can used to create nano-size bubbles. The system just makes those wheels rotate so fast that they form supercavitation. Those fast-rotating wheels form nano-size bubbles in liquids. Those bubbles can used to block blood vessels. They can capture viruses or bacteria. And they can used to fill bacteria. 

Nano-size bubbles can used in medical solutions. Nanobubbles can close the blood vessels. Researchers can use them them destroy non-wanted cells. The wheel-shaped nanomachines can also create bubbles in the water, and they can destroy bacteria from dirty water, When those machines are not needed anymore, the acoustic system just makes them resonate, and that thing destroys the nanomachine. 


https://scitechdaily.com/bionanomachine-breakthrough-a-master-key-for-sustainable-chemistry/


https://en.wikipedia.org/wiki/Supercavitation

Comments

Popular posts from this blog

What is the difference between TR-3A and TR-3B? And are those planes real?

What is the difference between TR-3A and TR-3B? And are those planes real? Is TR-3B (0) "Black Triangle UFO" or is it only the piece of paper?  The study project, what is used to create advanced ideas for use of the nuclear-powered aircraft. Or is it the study project or black budget aircraft, where lost 2,3 trillion dollars (1)of the stealth bomber were gone. In this text is things, that might seem very difficult to accept, and when we are thinking about things like doubling the object or making it smaller by using huge layers of energy, nothing denies to test those things. But were those tests successful, there is no data about that in public Internet, so we must say that things like doubling the human or aircraft can be tested, but the results can be unknown.  But in the source two is the tale, what seems like impossible, those men, who got Noble Prize put at first time one atom to the box, and hit it with photon one photon in the box and hit it with th

Mythic Planet X is an interesting thing because that allows the way to the perfect stealth technology.

  Mythic Planet X is an interesting thing because that allows the way to the perfect stealth technology.  Could a hypothetical Planet X tunnel all radiation?  The myth of Planet X still lives. Nobody ever saw that planet, and the thing that supports the theory of previously unknown large-size planets in Kuiper's belt are mysterious anomalies in Neptune's trajectory. The thing is that nothing else supports the theory of the existence of the "invisible planet". The size of the planet must be very big. And its gravitational field strong that it can affect Neptune's trajectory.  And the search for that mysterious planet is very long work. In some visions, the mysterious gravitational source is mentioned as the small black hole, but nobody understands why that black hole doesn't seem to interact.  In some other theories, Planet X is a glimpse of dark matter. And that thing makes it invisible. But there is one weakness. The dark matter object must have some kind of

Nanoparticles are excellent tools for medicine transporters.

"Researchers have developed a new therapy for pancreatic cancer involving nanoparticles that stimulate immune responses and improve drug delivery. This innovative method has led to significant tumor reduction in mice and holds potential for treating other cancers. Credit: SciTechDaily.com" (ScitechDaily, New Nanoparticle Cancer Treatment Successfully Shrinks and Eliminates Pancreatic Tumors) Nanoparticles can carry medicines into wanted cells. The idea is that the same system that feeds those cells transports those nanoparticles into cells that need medicine. When a nanoparticle goes, into a cell, it releases the chemicals into the targeted cells. Because nanoparticles don't let medical molecules interact with a body that makes it possible to create new and more powerful cytostatics. Nanoparticles can transport things like ricin molecules into wanted cells.  Ricin is one of the most poisonous chemicals. That chemical is useful for next-generation cytostatics, if researche