Skip to main content

The difference between symmetry and asymmetry is interesting.


Information travels in asymmetric systems. When the system reaches energy symmetry information will not flow. The reason for that is simple. All systems attempt to reach a stable or symmetric energy state. The reason why no system can reach energy stability is that all systems are part of other systems. And finally, the biggest known system the universe is part of space. That causes a situation in that energy travels out from the universe. 

Researchers can store information in symmetrical systems. If systems are fully symmetrical. They can trap things like radio waves or even light inside them. Because all particles are sending energy waves at the same time. They cannot break the structure. So in symmetrical systems the information hovers between particles. Symmetrical systems can stand more energy than asymmetrical systems. 

Things like neutron poisoning where neutrons hover because of their radiation is a good examples of a symmetrical system. Neutron poisoning mean a situation where neutrons hover in a symmetric energy field. There is no problem. But if something hits that system it causes asymmetry that pushes the structure out of balance. The same way trapping light in a 3D structure base is in symmetry. 

Trapping light in 3D crystals is one of the most interesting things in history. Trapped light can use for making research on trapped waves, and the trapped light can be the key to next-generation sensor systems. Trapping light in 3D crystal bases the idea of Anderson localization. 


"Ultrafast optical field incident on material with broken spatial symmetry (blue), time-reversal symmetry (yellow), or both (green) to generate THz radiation. Insets illustrate various mechanisms that lead to rectified THz currents high-frequency optical fields. Credit: Hou-Tong Chen/Los Alamos National Laboratory" (ScitechDaily.com/Lighting Up Quantum Realms: Terahertz Spectroscopy and Symmetry-Broken Materials)


"Advanced computing has helped researchers solve a decades-old mystery about light localization in 3D structures. The study found that light can be trapped or “localized” in random packings of metallic spheres, paving the way for potential developments in lasers and photocatalysts. Credit: Yale University. (ScitechDaily.com/Trapping Light in 3D: Physicists Unlock the Longstanding Mystery of Trapped Waves)



The fullerene balls in steel can make it possible that there is space in metal where it can conduct energy that impacts the metal structure. 

The idea is that in optical systems the interference or superpositioning of the light wave is possible to trap the light inside the quantum system. When some kind of EM-stress impacts trapped light. That increases its energy. Then the trapped light can use as the sensor that tells if something stresses the system. 

The asymmetry in the system causes situations where information starts to move. Glass is one example of rigid material, that seems very hard  When something hits things those things there is no room where energy can be dumbed. So that means the energy asymmetry destroys the glass. When somebody hits glass by using a hammer that tool causes energy asymmetry in the system. And that asymmetry destroys the material. 

The reason why metals stand more impact is that in metals there is space where energy can go. That thing makes metals elastic. So when something hits the metal That impact pushes those atoms in the metal's structure inside. Things like steel are metal-carbon hybrid. The carbon forms the internal structures in steel.

 That makes space where energy can transfer in that material.  And that means the impact energy will transfer to metals like steel slower than glass. In ceramic structures, atoms cannot move at all, and impact energy transfers to the structure faster. And that is the thing that makes glass fragile. 

The reason why glass is fragile is also its homogenous silicon material. When something impacts class the energy causes resonation between those silicone atoms. And that resonation causes the standing waves that are pushing silicone atoms away. 

Steel is hybrid material where all atoms are not resonated. When iron resonates the steel can dump that energy in the carbon. And carbon pulls standing waves inside them. If there is fullerene in the steel those carbon balls make it possible to create space in the steel structure. That thing makes Damascus Steel so strong. 

Demon core means the subcritical mass of plutonium in the Los Alamos nuclear laboratory in 1945. When one participant in the nuclear program scratched that plutonium mass by using a screwdriver. That caused the situation where the radiation level in the laboratory rose and some people died. 

The demon core is one of the examples of how the asymmetry in the system causes the situation, where the system goes out of balance. And that is the thing that launches nuclear fission. Same thing: asymmetry in energy levels between the ends of the electric wires makes the electricity travel in the wire. All systems attempt to reach a stable position. And that's why energy always travels in lower energy states. 

When we think about things like demon core in nuclear physics we must realize that even small asymmetry in energy is enough that the fission reaction begins. The demon core means the situation where somebody just pushes plutonium or causes small local energy pike in plutonium that thing causes nuclear fission. 


https://scitechdaily.com/lighting-up-quantum-realms-terahertz-spectroscopy-and-symmetry-broken-materials/

https://scitechdaily.com/trapping-light-in-3d-physicists-unlock-the-longstanding-mystery-of-trapped-waves/?expand_article=1


https://en.wikipedia.org/wiki/Anderson_localization


https://en.wikipedia.org/wiki/Demon_core


https://en.wikipedia.org/wiki/Superposition_principle

https://en.wikipedia.org/wiki/Wave_interference


Comments

Popular posts from this blog

What is the difference between TR-3A and TR-3B? And are those planes real?

What is the difference between TR-3A and TR-3B? And are those planes real? Is TR-3B (0) "Black Triangle UFO" or is it only the piece of paper?  The study project, what is used to create advanced ideas for use of the nuclear-powered aircraft. Or is it the study project or black budget aircraft, where lost 2,3 trillion dollars (1)of the stealth bomber were gone. In this text is things, that might seem very difficult to accept, and when we are thinking about things like doubling the object or making it smaller by using huge layers of energy, nothing denies to test those things. But were those tests successful, there is no data about that in public Internet, so we must say that things like doubling the human or aircraft can be tested, but the results can be unknown.  But in the source two is the tale, what seems like impossible, those men, who got Noble Prize put at first time one atom to the box, and hit it with photon one photon in the box and hit it with th

Mythic Planet X is an interesting thing because that allows the way to the perfect stealth technology.

  Mythic Planet X is an interesting thing because that allows the way to the perfect stealth technology.  Could a hypothetical Planet X tunnel all radiation?  The myth of Planet X still lives. Nobody ever saw that planet, and the thing that supports the theory of previously unknown large-size planets in Kuiper's belt are mysterious anomalies in Neptune's trajectory. The thing is that nothing else supports the theory of the existence of the "invisible planet". The size of the planet must be very big. And its gravitational field strong that it can affect Neptune's trajectory.  And the search for that mysterious planet is very long work. In some visions, the mysterious gravitational source is mentioned as the small black hole, but nobody understands why that black hole doesn't seem to interact.  In some other theories, Planet X is a glimpse of dark matter. And that thing makes it invisible. But there is one weakness. The dark matter object must have some kind of

Nanoparticles are excellent tools for medicine transporters.

"Researchers have developed a new therapy for pancreatic cancer involving nanoparticles that stimulate immune responses and improve drug delivery. This innovative method has led to significant tumor reduction in mice and holds potential for treating other cancers. Credit: SciTechDaily.com" (ScitechDaily, New Nanoparticle Cancer Treatment Successfully Shrinks and Eliminates Pancreatic Tumors) Nanoparticles can carry medicines into wanted cells. The idea is that the same system that feeds those cells transports those nanoparticles into cells that need medicine. When a nanoparticle goes, into a cell, it releases the chemicals into the targeted cells. Because nanoparticles don't let medical molecules interact with a body that makes it possible to create new and more powerful cytostatics. Nanoparticles can transport things like ricin molecules into wanted cells.  Ricin is one of the most poisonous chemicals. That chemical is useful for next-generation cytostatics, if researche