Skip to main content

AI and PCR can create brand-new species.


PCR (Polymerase Chain Reaction) makes it possible to multiply the DNA. And in genetic engineering, the only thing needed is the DNA. If researchers want to put some cells together to make some new chemicals, they must just find a certain DNA sequence that controls some enzyme production. Enzymes are complicated molecules.

In a natural environment, cells use raw materials that they get from nutrients. Then that cell selects the right components from the food for the raw material that it requires for enzyme production. The AI can provide high enough accuracy for the DNA base pairs that are responsible for the selection of chemicals like selene.

If the AI can search for and locate certain base pairs, that means the system can change the base pairs. Or, as other people say, researchers can rewrite the genetic code with very high accuracy. That means that the cells can reprogram to select another raw material for their production, like enzymes. This is the thing that the cells can do to make many new products, like spider fiber that can be used as bullet-proof material. But the hollow spider fibers can also be used to protect extremely thin optical fibers.

Biotechnology is one of the tools that can be used to create complicated molecular structures. The system that makes high-accuracy biomanipulation possible would use miniature lasers and laser microscopes connected with mass- and plasma spectrometers. That thing makes it possible to create new artificial organisms that can produce complicated molecules like medicines and enzymes that can be used in nanomachines.



"Scientists have engineered bacteria to produce pN-Phe, a non-standard amino acid with potential medical applications. Future work will optimize this process and explore its potential in vaccines and immunotherapies".



"MIT-Watson AI Lab’s new AI system drastically streamlines drug and material discovery by accurately predicting molecular properties with minimal data. The system leverages a “molecular grammar” learned via reinforcement learning to generate new molecules efficiently. This method has shown remarkable efficacy even with datasets of less than 100 samples". (https://scitechdaily.com/mits-ai-learns-molecular-language-for-rapid-material-development-and-drug-discovery/)


AI and genetic engineering can be powerful tools against infections.


Genetically engineered cells can make non-native amino acids. That is one of the breakthroughs in genetic engineering. Nanotechnology makes it possible to create polymer-type amino acids. And in some visions, the microchip-controlled macrophage can use those amino acids as a tool to destroy targeted cells. The polymer-type amino acid can aim through the false leg of a genetically engineered macrophage. That amino acid can drill the targeted cells like some drills.

And that thing makes it possible to create systems with the ability to destroy unwanted cells with extremely high accuracy. Biotechnology and AI-controlled biomanipulation are the ultimate tools. The AI can control the polymer chains with high accuracy. Things like DNA molecular chains are also polymer chains. And AI makes it possible to manipulate that molecular structure with very high accuracy.


https://scitechdaily.com/mits-ai-learns-molecular-language-for-rapid-material-development-and-drug-discovery/

https://scitechdaily.com/artificial-muscles-flex-for-the-first-time-ferroelectric-polymer-innovation-in-robotics/

https://scitechdaily.com/shrinking-light-nanoscale-optical-breakthrough-unlocks-a-world-of-quantum-possibilities/

https://scitechdaily.com/engineers-create-bacteria-that-can-synthesize-an-unnatural-amino-acid/

Comments

Popular posts from this blog

What is the difference between TR-3A and TR-3B? And are those planes real?

What is the difference between TR-3A and TR-3B? And are those planes real? Is TR-3B (0) "Black Triangle UFO" or is it only the piece of paper?  The study project, what is used to create advanced ideas for use of the nuclear-powered aircraft. Or is it the study project or black budget aircraft, where lost 2,3 trillion dollars (1)of the stealth bomber were gone. In this text is things, that might seem very difficult to accept, and when we are thinking about things like doubling the object or making it smaller by using huge layers of energy, nothing denies to test those things. But were those tests successful, there is no data about that in public Internet, so we must say that things like doubling the human or aircraft can be tested, but the results can be unknown.  But in the source two is the tale, what seems like impossible, those men, who got Noble Prize put at first time one atom to the box, and hit it with photon one photon in the box and hit it with th

Mythic Planet X is an interesting thing because that allows the way to the perfect stealth technology.

  Mythic Planet X is an interesting thing because that allows the way to the perfect stealth technology.  Could a hypothetical Planet X tunnel all radiation?  The myth of Planet X still lives. Nobody ever saw that planet, and the thing that supports the theory of previously unknown large-size planets in Kuiper's belt are mysterious anomalies in Neptune's trajectory. The thing is that nothing else supports the theory of the existence of the "invisible planet". The size of the planet must be very big. And its gravitational field strong that it can affect Neptune's trajectory.  And the search for that mysterious planet is very long work. In some visions, the mysterious gravitational source is mentioned as the small black hole, but nobody understands why that black hole doesn't seem to interact.  In some other theories, Planet X is a glimpse of dark matter. And that thing makes it invisible. But there is one weakness. The dark matter object must have some kind of

Nanoparticles are excellent tools for medicine transporters.

"Researchers have developed a new therapy for pancreatic cancer involving nanoparticles that stimulate immune responses and improve drug delivery. This innovative method has led to significant tumor reduction in mice and holds potential for treating other cancers. Credit: SciTechDaily.com" (ScitechDaily, New Nanoparticle Cancer Treatment Successfully Shrinks and Eliminates Pancreatic Tumors) Nanoparticles can carry medicines into wanted cells. The idea is that the same system that feeds those cells transports those nanoparticles into cells that need medicine. When a nanoparticle goes, into a cell, it releases the chemicals into the targeted cells. Because nanoparticles don't let medical molecules interact with a body that makes it possible to create new and more powerful cytostatics. Nanoparticles can transport things like ricin molecules into wanted cells.  Ricin is one of the most poisonous chemicals. That chemical is useful for next-generation cytostatics, if researche